
Packet-Level Static Timing Analysis for

On Chip Networks

Evgeni Krimer





Packet-Level Static Timing Analysis for

On Chip Networks

RESEARCH THESIS

In Partial Fulfillment of The Requirements for the Degree of Master

of Science in Electrical Engineering

Evgeni Krimer

Submitted to the Senate of the Technion - Israel Institute of Technology

Sivan 5769 — Haifa — May 2009





The research thesis was done under the

supervision of Dr. Isaac Keslassy and

Dr. Avinoam Kolodny in the Faculty of

Electrical Engineering.





Contents

Abstract 1

List of Acronyms 2

List of Symbols 3

1 Introduction 4

1.1 Network on Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Wormhole Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Virtual Chanels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Routers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Analytical Model 12

2.1 Constructing the Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 The Reduced Configuration . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Sharing a Single Link with a Single Flow . . . . . . . . . . . . . . . 15

2.1.3 Sharing a Single Link with Multiple Flows . . . . . . . . . . . . . . . 16

2.1.4 Sharing Multiple Links . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Deriving Throughput and Delay . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Model Validation 24

3.1 Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



3.2 Sharing a Single Link with a Single Flow . . . . . . . . . . . . . . . . . . . . 28

3.3 Sharing a Single Link with Multiple Flows . . . . . . . . . . . . . . . . . . . 32

3.4 Sharing Multiple Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Benchmark Delay Model and Placement Optimization 35

4.1 Benchmark Delay Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Placement Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Discussion and Future Work 41

6 Conclusions 43

A Simulator 44

A.1 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 47



List of Figures

1.1 Wormhole packet structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Example of wormhole packet propagation in network . . . . . . . . . . . . . 5

1.3 Internal router structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Flow X sharing a single link with a single interfering flow. . . . . . . . . . . 14

2.2 Flow X sharing a single link with multiple interfering flows. . . . . . . . . . 18

2.3 Flow X sharing multiple links with multiple interfering flows. . . . . . . . . 20

2.4 Markov chain representing flow X sharing multiple links with multiple in-
terfering flows (Figure 2.3a). . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Example of possible neglected interaction between interfering flows. . . . . . 25

3.2 Configuration 1 showing the isolation method . . . . . . . . . . . . . . . . . 26

3.3 End-to-end latency for packets from flow X with different interference com-
binations according to Table 3.2 for configuration 1 . . . . . . . . . . . . . . 26

3.4 Configuration 2 showing the isolation method . . . . . . . . . . . . . . . . . 27

3.5 End-to-end latency for packets from flow X with different interference com-
binations according to Table 3.2 for configuration 2 . . . . . . . . . . . . . . 27

3.6 Flow X sharing a single link with a single flow - variable λX . . . . . . . . . 29

3.7 Flow X sharing a single link with a single flow - variable λB. . . . . . . . . 30

3.8 Comparison of sharing a single link with three total flows (two interfering
flows with (λA = λB = 0.2) (sim-triple and model-triple) and sharing the
link with one interfering flow of equivalent rate (λA = 0.4) (sim-double and
model-double). HDM models both cases as a single interferer with (λ = 0.4). 31

3.9 Flow X sharing multiple links with multiple flows – variable buffer capacity. 33

3.10 Flow X sharing multiple links with multiple flows – varying the order in
which interfering flows interact along the path of flow X. . . . . . . . . . . 34

4.1 Placement A of the components and flows of the audio-video SoC of [20]. . 37



4.2 Total queuing delay predicted by detailed simulation, our model, and HDM
for the 8 flows with highest latency corresponding to the system of Table 4.1
with the placement depicted in Figure 4.1. . . . . . . . . . . . . . . . . . . . 38

4.3 Relative error in latency estimation between our model and HDM relative to
detailed simulation for the system requirements of Table 4.1 and Placement
A (Figure 4.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Placement B of the components and flows of the audio-video SoC of [20]. . 39

4.5 Comparison of estimated latency of placement A (Figure 4.1) and placement
B (Figure 4.4) predicted by detailed simulation, the proposed model, and
HDM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A.1 Screenshot of 4x4 NoC simulation . . . . . . . . . . . . . . . . . . . . . . . . 44



Abstract

Networks-on-chip (NoCs) are used in a growing number of Systems-on-Chip (SoCs) and

Chip Multi Processors (CMPs), increasing the need for accurate and efficient modeling to

aid the design of integrated systems. Such modeling is required for many decisions that

need to be made during the design flow, such as resource allocation, placement, and QoS

assurance. With no such modeling available today, the choice is limited to simulations,

which are very time-consuming and often decrease the efficiency of the design.

We present a methodology for packet-level Static Timing Analysis (STA) in NoCs. It

enables quick and accurate gauging of the performance parameters of a virtual-channel

(VC) wormhole NoC without using simulation techniques. The network model can handle

any topology, link capacities, and buffer capacities. It provides per-flow analysis that is

orders-of-magnitude faster than simulation while being both significantly more accurate

and more complete than prior static modeling techniques. Our methodology is inspired by

models of industrial flow-lines. Using a carefully derived and reduced Markov chain, the

model can statically represent the dynamic network state and closely estimate the average

latency of each flow. Simulations are used to validate and evaluate the model.

As an example application, we apply our model in a placement optimization scenario.

We show that our model can accurately choose between placement options to minimize

end-to-end delay as verified by detailed simulation. This example also demonstrates the

disadvantages and inaccuracies of prior models, which choose a sub-optimal solution over

a more optimal placement.

1



List of Acronyms

NoC — Network on Chip

SoC — System on Chip

CMP — Chip Multi Processor

QoS — Quality of Service

STA — Static Timing Analysis

V LSI — Very Large Scale Integration

MC — Markov Chain

V C — Virtual Channel

HDM — Heuristic Delay Model

CAD — Computer-Aided Design

2



List of Symbols

λα — packet arrival rate of flow α [packets per unit time]

Mα — packet length of flow α [flits]

φ(l) — capacity of link l [flits per unit time]

si — Markov chain state i

πi — stationary distribution probability of state si

π — stationary distribution probability (vector of πi)

γi — fraction of packets of a measured flow (X) served while in state si

ρi — NoC throughput associated with state si for flow X [packets per unit time]

ηi — head-flit propagation delay of packets in flow X incurred while in state si [time units]

τα — expected time to fully transmit a packet of flow α [time units]

∆(l) — buffer capacity on link l for flow X

δ(l) — buffer occupancy on link l for flow X

fα — transmission completion probability for current packet of flow α

cα — transmission incompletion probability for current packet of flow α

TX — expected throughput observed by flow X [packets per unit time]

WX — expected waiting time in the source node input buffer for flow X packets [time units]

HX — expected propagation time of flow X packets head flit [time units]

LX — expected delay of packets in flow X [time units]

SX — average service time for packets in flow X (≡ 1
TX

) [time units]

σ2
SX

— variance of the average service time for packets in flow X

C2
SX

— coefficient of varation of the average service time for packets in flow X

ξ — delay error

F — total number of flows in the network

R — total number of nodes/routers

Ψα — number of interfering flows for flow α

Pα — number of hops between the source and the destination for flow α

3



Chapter 1

Introduction

1.1 Network on Chip

Networks-on-chip (NoCs) are increasingly used instead of buses and dedicated signal wires

in large-scale processors and, even more so, in modern systems-on-chip (SoC) [5]. Predic-

tions [1] quote tens and hundreds of interconnected processing units in several years.

Today there already are existing commercial chips with such properties. Cisco Quantum-

Flow Processor with 40 cores, Intel Teraflops research chip with 80 cores, NVidia Tesla

C870 with 128 cores and Cisco Silicon Packet Processor with 188 cores. While there is no

intention to claim that such numbers of cores are the mainstream today, their existence

definitely points out the trends of tomorrow.

In NoC-based systems, data transmission takes the form of multi-packet flows routed

through the NoC over multiple links and routers. Each module is connected to the network

through a router and routers are connected among themselves. Different interconnection

topologies are mentioned in the literature. Most common are mesh, torus and incomplete

mesh.

1.2 Wormhole Switching

Wormhole Switching, which is also often referred to as Wormhole Routing [29], is a flow

control technique widely used for decades in different areas from local computer clusters

[27] to SoC, NoC [13] and SpaceWire [32,33] chips. That’s since it minimizes the amount

of buffering required in the routers across the network.
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Data flits

Control flits

Figure 1.1: Wormhole packet structure

Large packets are broken into small (constant length) units called flits (flow control digits).

Two control flits are added, a head flit at the beginning and a tail flit at the end of each

packet as shown in Figure 1.1. Here the packet consists of M (data) flits while H and

T represent head and tail (control) flits. The head flit contains all the routing relevant

information and the subsequential flits follow its path. The tail flit is used to signal the

end of the message and for various “bookkeeping” purposes. This behavior is depicted in

Figure 1.2. The packet information propagates as a long worm of flits, hence the name of

the wormhole routing.
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Figure 1.2: Example of wormhole packet propagation in network
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1.3 Virtual Chanels

Using the Wormhole Switching technique has a few disadvantages. Once the head flit has

been transmitted and until the tail flit is transmitted, the link is “allocated” to a specific

packet and cannot be used for transmission of other packets. In case the head flit arrives

to a router where a required link is allocated, the packet will be stalled until the link is

available. During that time all the links that the head flit has already gone through but

the tail flit has not, will not be used for any other packets. This has a strong performance

impact.

The Virtual Channels (VC) [13] feature allows a router to serve a few packets simul-

taneously which logically can be interpreted as having multiple links. This is done by

additional logic in the router. The logic is responsible for maintaining the status of several

flows (the maximum number of maintainable flows is referred to as number of VCs). Upon

arrival of a head flit, a VC is allocated. It is deallocated once the tail flit passes.

During normal operation the active (allocated) VCs are served. Different serving policies

are mentioned in the literature [36].

1.4 Architecture

In the literature there are different approaches for the NoC architecture. This implies

different network topologies and different router (node) structures. Moreover, there are

different parameters in different NoC architectures. In this section we’ll describe our

architecture and assumptions.

1.4.1 Network

Unlike other previous NoC models which assume specific topologies and identical link

parameters, we do not make any such assumptions. We do assume a deterministic routing

(although the model can be probably adapted for a statistic routing as well as discussed

in Chapter 5).

6



1.4.2 Routers

Each NoC node is a router. All the different endpoints (cores, caches, etc.) are connected

to the NoC through a router. The basic router structure is presented on Figures 1.3a,

1.3b and 1.3c. In the same way, as there are no special requirements/assumptions on the

network topology and transmission lines, there are no requirements on routers for being

identical or symmetric. Different routers might have different numbers of ports and even

the same router may have a different number of virtual channels per port.

However, in this work we do assume that there are ”enough” VCs for all the flows which

means that there is no blocking (due to lack of VCs) situation.

The scheduler block is responsible for selecting the flit to be sent to the out port among

all the available input ports VCs. We assume that it acts in a round-robin manner.

This behavior is chosen over the others mentioned in the literature [36], since it is easy for

implementation in hardware and provides fairness. However, the approach used to develop

the analytical model in this work can be used to develope models for other scheduling

methods as well.

1.5 Related Work

Much of the prior work on analytical delay modeling in wormhole-enabled networks ap-

proximates the mean delay of packets in the entire system rather than estimating the delay

of each source-destination flow separately [4,21,23,26,31]. Such gross approximations are

often inadequate, and in such cases cannot be used in the NoC design process to efficiently

optimize the allocation of resources.

In [31], the authors develop an analytical model. Their approach relies on calculating

the network delay and using the M/G/1 model to estimate the waiting time. A similar

approach is used in all the later works well as in this one. However, the calculation of the

network delay varies.

In [26], authors analyze the traffic behavior in the spidergon scheme with a deterministic

routing and uniform traffic. Each physical link is assumed to share exactly two virtual

channels. Regardless of the blocking, the arrival at each channel is approximated to be

a Poisson process. The total traffic on each physical link is considered rather than the

traffic on each individual virtual channel.

A stochastic model to predict the average message latency in k-ary n-cubes with deter-

7



(a) High-level router structure with input buffers

(b) Router scheduler (c) Input buffer structure

Figure 1.3: Internal router structures
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ministic routing in the presence of hot-spot traffic is presented in [23]. Authors assume

exactly two virtual channels, a constant message length and Poisson arrival process.

[21] analyzes a torus network topology with deterministic routing and wormhole switching

under Poisson arrival process and uniform traffic pattern. Unlike the previous work, it

assumes an arbitrary number of virtual channels. An average of all the flow delays across

the network is modeled and it is used in the derivation of the waiting time using the

M/G/1 model.

None of [21,23,26,31] refer to intermediate buffer sizes. However, as shown in Section 3.4,

they have a direct impact on the end-to-end latency. [4] claims to capture the effects of finite

buffers on the performance. Its authors analyze the performance of wormhole switching

on k-ary n-cubes assuming deterministic routing, fixed message length and Poisson arrival

process.

In addition, while state-of-the-art NoC architectures multiplex multiple packets on the

network links using virtual channels [6, 7, 25, 28, 37], most existing analytical models do

not support virtual channels [10, 12,15,30,39].

Further, in [19, 24, 38], the authors formulate worst-case latencies of flows in the NoC.

While this approach is suitable for real-time flows with hard deadlines, the vast majority

of communication flows in typical SoCs has a set of more relaxed timing requirements,

which can be satisfied with statistical guarantees.

A heuristic approach to estimate the average delay of each flow was taken in [18]. The

authors developed a heuristic delay model (HDM) that takes into account the capacities

of all the links traversed by the modeled flow, as well as the bandwidth consumed by

all other network flows which share some links with the modeled flow. Their heuristics

attempt to estimate the serialization and head-of-line blocking, which add to the delays

of a link because of congestion further downstream. This approach is useful, providing a

closed-formed formula to estimate the delay for each flow in the network based on traffic

parameters of all the flows. However, the model uses heuristics and its accuracy has not

been confirmed in a rigorous fashion. In addition, [18] does not capture the effects of finite

buffer sizes. In Chapter 3, we compare this model against ours and show how its heuristic

approach can lead to a wrong optimization decision.

9



1.6 Contributions

The purpose of this work is to rigorously derive a delay model for packet-level static timing

analysis (STA) for NoC-based SoCs. Static timing analysis in a shared network is a non-

simulation-based technique to estimate the average delay of each flow in the network, given

the network topology, link capacities, router architecture, and the bandwidth requirements

and characteristics of all flows.

The motivation for a per-flow STA technique is to enable a range of design optimizations

that can rely on accurate and fast network analysis. Methods such as module placement

and resource allocation [2,35] require a large number of iterations, and thus the evaluation

of network performance within each iteration must be very efficient. Until now, an accu-

rate and complete modeling of advanced NoCs has only been possible with detailed and

time-consuming simulations. The main reason is that network resources, including links,

routers, buffers, and ports, are shared between several information flows. Thus, contention

can arise inducing statistical uncertainty in the delay of each packet. Detailed simulation,

however, is too slow to be effective within an optimization inner loop because all internal

buffers and states must be modeled on a cycle-by-cycle basis.

We present a rigorous analytical model that relies on a carefully constructed and reduced

Markov chain to represent network state, including the occupancy of all buffers. Our

model is inspired by industrial work-flow modeling techniques and, to the best of our

knowledge, is the first that can accurately account for arbitrary network topology, link

capacities, and buffering, when using wormhole routing with virtual channels. We rely on

the well-developed theory of stochastic processes and show that our technique faithfully

predicts network queuing delay for both synthetic and real-world SoC traffic scenarios. In

this work we limit the analysis to packets that have random arrival times according to a

Poisson distribution. We present results and validate the model for the delay analysis of

flows with fixed-length packets that are composed of a large number of flits. We discuss

extensions to these assumptions as future work.

To summarize our contributions:

• We present the first rigorous NoC model that is based on stochastic theory and show

how to represent and solve for the network state using a Markov chain.

• We show how to account for arbitrary and finite buffering, as well as support wormhole

routing and virtual channels. We use network delay analysis as an illustrative example

of the modeling technique

10



• We validate our model using synthetic and real-world scenarios, and discuss why it is

more complete and more accurate than prior analytical models.

• We demonstrate that our model can serve at the core of a design optimization method

by showing that it can faithfully choose between multiple placement options in a real-

world SoC example, and do so while requiring orders of magnitude less time than

simulation. We also show that the most advanced prior-art model fails to make the

correct optimization decision.

11



Chapter 2

Analytical Model

Our model supports an arbitrary NoC topology with wormhole routing and virtual chan-

nels. The capacity of each link in the network may be set arbitrarily. Likewise, the

capacities of the buffers in each virtual channel are arbitrary as well. We assume that all

packets have a fixed length, and that the packet arrival times at the injection port of each

node can be modeled by a Poisson random process. In Chapter 5 we discuss extensions

to our model that relax these assumptions on packet length and distribution. We also

assume that there is no blocking in the network due to a lack of virtual channels, and

that the destination node can always eject packets from the network. Finally, we place no

restriction on the routing algorithm except that it be deterministic.

Our technique follows three main steps:

1. We focus on the NoC service for a particular flow of interest, which we generically call

flow X, and model it using a Markov chain (MC) [8]. The Markov chain represents the

network state of the routers and buffers on the path of flow X, as well as the impact

of interfering flows, i.e., those flows that share at least one link with flow X.

2. We derive the flit propagation characteristics by computing the stationary distribution

of the Markov chain.

3. We use the derived properties and standard analysis of M/G/1 queues to calculate the

expected packet delay and the throughput of flow X.

12



2.1 Constructing the Markov Chain

2.1.1 The Reduced Configuration

To fully represent the NoC as a Markov chain, the internal state of each router (and in

particular the buffer occupancies) as well as the characteristics of all flows need to be

expressed as states in the chain. Unfortunately, this naive approach would result in an

enormous and intractable number of states.

As shown in the transition from Figure 2.1a to Figure 2.1b, to reduce this Markov chain

to a manageable size, we generate a separate model for each ”isolated” flow, generically

represented as flow X. We call this model the reduced configuration. In the reduced

configuration, we limit the analysis to the routers on the path of X, and only consider

those other flows that share network links with X, such as flows A and B, but not flow C

(this particular reduction method was also used in [17,18,40]).

To further simplify the Markov chain, we restrict our analysis to epochs in which the flits

of flow X are waiting to be served by the NoC. This last assumption eliminates the need

to model the large buffers at the network injection points and permits to model them as

infinite buffers. Without assuming that flow X is active, we would need to track the state

of the network during periods of inactivity, which would complicate the MC representation.

We discuss the implications of this simplification in Section 3.2.

The reduced configuration for flow X can be viewed as a Markov chain in which each state

is defined by the buffer occupancies and the existence of interfering flows along the links,

as shown in Figure 2.1c and explained in Section 2.1.2. We construct a specific Markov

chain for flow X to model its reduced configuration. This Markov chain representation

accounts for both the extra queuing delay caused by interfering flows, which share links

and ports with flow X, as well as for the delay of serialization and back-pressure within

flow X and between the flits of a single packet (Figure 2.1e).

This system is equivalent to an open queuing network (Figure 2.1e) and to a manufacturing

flowline (Figure 2.1d) with unreliable parallel machines [14]. By casting our problem in

terms of unreliable machines, we can leverage a large body of works on stochastic theory

and modeling methodology. We represent each hop taken by flow X as a production

station consisting of a group of parallel machines. Likewise, in each cycle, the router is

modeled as choosing a new machine in this group of parallel machines, in a round-robin

fashion. A functioning machine processes flow X and contributes to its throughput, while

a malfunctioning machine is equivalent to the link being used by an interfering flow.

13
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Figure 2.1: Flow X sharing a single link with a single interfering flow.
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In the following subsections we show how to construct the Markov chain for a number of

representative interference patterns and conclude the analytical model section by deriving

delay and throughput using the Markov chain (Section 2.2).

2.1.2 Sharing a Single Link with a Single Flow

In this scenario, measured flow X shares a single link with interfering flow B, as shown

in Figure 2.1, which also depicts the flow-line and queue representations and the associ-

ated MC. The MC, which represents this single-interferer case, requires only two states

(Figure 2.1c). State s1 represents a “no interference” situation, where flow X can use the

entire capacity of the shared link. If there are flits of both flows X and B waiting in the

buffers, as illustrated in Figure 2.1e, the round robin arbitration mechanism allocates the

shared link to each flow on every other cycle. As a result, each flow can utilize only half

of the link capacity. State s2 represents the situation where flow B interferes with the

measured flow X. The MC does not need to represent a situation where only flow B is

active, because it need only model the network as seen by flow X, and a separate MC is

constructed to model the network properties of flow B.

The MC representation also expresses the probabilities of transitioning between the states,

denoted in Figure 2.1c by the labels on the arrows connecting the two states. Starting

from state s1, where only flow X is active, the probability of transitioning to state s2 is

simply the probability that a new packet of flow B arrives. Assuming Poisson arrival times,

this probability is simply (λB). Conversely, the probability of staying in s1 is (1 − λB).

Starting from state s2, where both flows are active, the probability of transitioning to s1

is the probability that the current packet of flow B is fully transmitted (fB) and that no

new packet of flow B has arrived during this transmission time. The time required to

transmit a packet is the length of the packet (MB) divided by the available link capacity

φ, which is only half of the total capacity because flow X is also active:
(

τB = MB
1
2
φ

)

.

Thus, the probability of fully transmitting a packet at any time is 1
τB

. The probability

for another packet to appear during this time, which prevents transitioning back to s1 is

(λBτB). Therefore, the probability for transitioning from state s2 to state s1 is modeled

by:

fB =
1

τB

max (1 − τBλB, 0) = max

(

φ

2MB

− λB, 0

)

Finally, the probability for flow B to continue being active, and the MC to remain in state

s2 is modeled by:

cB = 1 − fB = min

(

(1 −
φ

2MB

) + λB, 1

)
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Section 3.2 shows how to use this MC to derive delay and throughput properties for

flow X, validates the results with detailed simulation, and discusses the implications and

comparison to HDM.

2.1.3 Sharing a Single Link with Multiple Flows

A configuration where the measured flow shares a link with two other flows is shown in

Figure 2.2 along with its flowline/queue equivalence and associated MC. Here, state s1

represents no interference, states s2 and s3 represent inference by only flow A or only flow

B respectively (i.e., flits of a single flow other than flow X are being multiplexed on the

same link), and s4 represents the state in which flits of all three flows (A, B and X) are

multiplexed on the same link.

With the additional states, the MC is more complex and has a larger number of possible

transitions. The evaluation of the transition probabilities is similar to the derivation

discussed above. For state s1, the probability of staying in this state of no interference is

the probability that no new packets arrive on flow A and no new packets arrive on flow B

((1 − λA)(1 − λB)). Conversely, a transition from s1 to s4 occurs when both flows A and

B become active at the same time (λAλB). The probability of transitioning from s1 to s2

is that of a packet arriving on flow A and not arriving on flow B, while the opposite is

true for a transition from s1 to s3.

We now discuss the transition probabilities from state s2. When a packet of flow A is fully

transmitted and no other packets of both flows A and B arrived during the transmission

time, then the MC transitions back from s2 to s1. To model the probability of fully

transmitting a packet, marked as fA, we need to first derive the expected transmission

time of a packet from flow A (τA). When a packet of flow A is being serviced, it can be

done while at state s2 at a rate of φ
2 , or in state s4 with a rate of φ

3 (because all three

flows are active in s4 but only two in s2). Therefore, the expected transmission time is

given by the expected fraction of time the packet is in states s2 and s4, which are related

to the stationary distribution probabilities of these states (π2 and π4 respectively):

τA =
MA

1
2φ

·
π2

π2 + π4
+

MA

1
3φ

·
π4

π2 + π4

=
2MA

φ

(

1 +
1

2

π4

π2 + π4

)

Given the expected transmission time, we can now model the probability of fully trans-
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mitting a packet as:

fA =
1

τA

max (1 − τAλA, 0) = max

(

1

τA

− λA, 0

)

Thus, the probability of transitioning from s2 to s1 is (fA(1 − λB)). The probability for

moving from s2 to s3 is that of fully transmitting the packet from flow A while a packet

from flow B arrives at the same time, or (fAλB). The final two transitions are of remaining

in s2 or changing to s4, which occur when flow A continues and either a packet from flow

B does not arrive (stay in s2), or does arrive (move to s4). As before, we mark the

probability of flow A continuing activity as:

cA = 1 − fA = min

(

(1 −
1

τA

) + λA, 1

)

The transitions out of state s3 are derived in the exact way as for state s2, reversing the

roles of flow A and flow B. With respect to state s4, the probability of transitioning to s1

is the probability that both flows A and B are fully transmitted, or fAfB. Transitioning

from s4 to s2 occurs when flow A continues and flow B finishes and the probability is

cAfB. In symmetric fashion, the probability of s4 to s3 is cBfA. Finally, the probability

of staying in state s4 is cAcB signifying that all flows remain active.

2.1.4 Sharing Multiple Links

A configuration of interfering flows over multiple links, including the equivalent queuing

and flowline representations, is shown in Figure 2.3. Unlike the previous cases, this scenario

includes a finite buffer that has to be taken into account. Flow X passes through two

routers, each with an interfering flow, and therefore can experience back-pressure from the

intermediate node that does not have the infinite buffers assumed on the network injection

and ejection packet queues. We assume that the intermediate flit queue has a depth of ∆

flits, and will block transmission of an upstream node when it is full (Figure 2.3b).

We explicitly model the occupancy of the intermediate buffer in the MC, by dedicating

states to each possible buffer occupancy level. We show this in Figure 2.4 for the case

where all link capacities are equal. The figure has three parts: Figure 2.4a shows only

those states of the MC that correspond to an occupancy level of δ; Figure 2.4b shows a

schematic symbol that represents the partial MC of Figure 2.4a; and Figure 2.4c is the

entire MC, using the schematic representation to simplify the figure.

Focusing on Figure 2.4a, state s1,δ represents the case where only flow X is active and

the buffer has occupancy level δ. State s2,δ represents the case where flows A and X
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Figure 2.2: Flow X sharing a single link with multiple interfering flows.
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are active but flow B is inactive and s3,δ is for when flows B and X are active but flow

A is inactive. Finally, s4,δ represents activity on all three flows and occupancy level δ.

Starting from s1,δ the buffer occupancy is not going to change in any scenario, because

both routers are servicing flow X at the same rate and the buffer is emptied and filled

at the same rate. The transition probabilities out of this state follow the same derivation

descried in Section 2.1.3. Similarly, state s4,δ cannot change the occupancy because the

service rate for flow X is equal to φ
2 at both routers. Again, the transition probabilities

out of s4,δ follow the reasoning presented in Section 2.1.3. Because each link has only

two multiplexed flows, however, the probability for fully transmitting a packet of the flow

interfering with flow X is derived in the same manner as in Section 2.1.2:

fα = max

(

φ

2Mα
− λα, 0

)

cα = 1 − fα = min

(

(1 −
φ

2Mα
) + λα, 1

)

α ∈ {A, B}

Note that these probabilities of fully transmitting, or continuing with, an interfering flow

are independent of the buffer occupancy. This is true because we assume that flow X is

always active and that the ejection port of the network is always available for each flow.

When flows A and X are active and flow B is inactive (state s2,δ), the service rate for flow X

is higher in the downstream router, which is only servicing X, than in the upstream router

that is servicing two flows. Therefore, the buffer occupancy decreases, which is represented

by the transition from s2,δ to s2,δ−1. This transition occurs with probability (cA(1 − λB)),

which is the probability that flow A remains active and that flow B remains inactive.

The other transition probabilities of s2,δ represent transitions that do not change buffer

occupancy, either because flow B becomes active or flow A is fully transmitted and the

service rate for flow X becomes equal at both routers. A similar analysis of state s3,δ shows

that if flow B continues and flow A does not become active, then the buffer occupancy

increases and the MC transitions to state s3,δ+1. This is because the downstream node is

now servicing flow X at half the rate of the upstream node.

The edge states s2,0 and s3,∆ are connected to themselves as shown on Figure 2.4c. Es-

sentially, the buffer can never have fewer than zero flits and cannot exceed ∆ flits. When

the buffer is full, flow X is still being serviced by the downstream buffer and is not stalled

(remember that we assume ejection is always possible). A full buffer causes back-pressure,

which reduces the transmission rate in the upstream node. Our model inherently accounts

for this back-pressure through the stationary distribution of the states, which directly

determines the throughput as explained in the following subsection.
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Figure 2.3: Flow X sharing multiple links with multiple interfering flows.

Observe that swapping the order of the interfering flows, i.e. swapping flows A and B

in Figure 2.3a, would result in a symmetrical MC leading to exactly the same stationary

distribution and estimated network properties. This is a significant improvement over the

prior HDM technique, in which the order of the interfering flows affected the estimated

delay. We further discuss this issue and show an example in Section 3.4.

2.2 Deriving Throughput and Delay

To derive the expected throughput of the NoC observed by flow X in the presence of

interference we rely on the fact that the Markov chain we construct is positive recurrent
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Figure 2.4: Markov chain representing flow X sharing multiple links with multiple inter-

fering flows (Figure 2.3a).
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and aperiodic. These properties imply that the random process corresponding to the state

transitions, which represents the NoC, is ergodic. Using the ergodic theorem [8, 22] the

expected throughput is given by:

(2.1) TX =
∑

πiρi

π (a vector) is the stationary distribution of the MC, which can be computed by solving

a system of linear equations.

Next, we express the expected delay of packets in flow X as:

(2.2) LX = WX + HX +
1

TX

WX is the expected waiting time in the source node input buffer, which we derive in

Equation 2.3. HX , is the average propagation time of the head flit that we approximate

in Equation 2.5. The final term, TX , is the expected throughput observed by flow X as

computed earlier and expressed in units of packets per unit time.

To express the input delay (WX) we use classic results from the analysis of M/G/1

queues [22], which the NoC conforms to through the assumptions on Poisson packet arrival

times and continuous service:

(2.3) WX =
(1 + C2

SX
)λX

2TX(TX − λX)

The waiting time is dependent on the throughput (TX), arrival rate (λX), and the coeffi-

cient of variation (C2
SX

):

(2.4) C2
SX

=
σ2

SX

S2
X

To calculate the average service time (SX) and its variance (σ2
SX

) we first compute the

expected number of packets serviced at each state of the Markov chain, γ. γ is the fraction

of packets at each state, rather than the fraction of time spent at each state, which is π.

γi

πiρi
=

γj

πjρj
∀i, j

∑

γi = 1

We can now compute the average service time and its variance, and use the result to com-

pute the coefficient of variation (Equation 2.4) and finally the waiting time (Equation 2.3):

SX =
∑ γi

ρi
≡

1

TX
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σ2
SX

=
∑ γi

ρ2
i

− S2
X

The last component of the expected packet delay (Equation 2.2) is the head-flit propaga-

tion delay:

(2.5) HX =
∑

γiηi

ηi is the head-flit propagation delay of packets in flow X incurred while in state si, mea-

sured in units of time.

Finally, for SX ≫ HX we can approximate the end-to-end packet delay as:

(2.6) LX ≈ WX +
1

TX
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Chapter 3

Model Validation

This section illustrates how to apply the model to compute network properties such as

delay and throughput. We use the scenarios described in Sec. 2.1.2–2.1.4 and, for each

case, compare the results of our model with detailed simulations and with HDM [18].

Our cycle-accurate, discrete-event, NoC simulator uses the OMNET++ framework [41].

The simulator simulates wormhole switching with virtual channels [13], deterministic XY

routing, and configurable network topology, buffers, and traffic parameters. The simulated

NoC properties are summarized in Table 3.1.

Table 3.1: Simulated NoC properties.

Dimensions 4 × 4

Message length 256 flits

Flit length 32 bit

Virtual Channels 4

Buffer size 5 flits

Routing wormhole XY

Node ↔ Router capacity 400Gbps

Router ↔ Router capacity 10Gbps

Router frequency 333MHz
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Figure 3.1: Example of possible neglected interaction between interfering flows.

3.1 Isolation

In Section 2.1.1 we explained how to isolate the investigated flow X from the rest of the

flows. By doing this we neglect to account for possible indirect interactions between other

flows and flow X in different parts of the NoC, as illustrated in Figure 3.1. In this figure,

flow C does not interfere with flow X directly, but flows A and B, which do interfere with

flow X, interact through flow C.

We investigate the potential impact of indirect interference using the configurations shown

in Figure 3.2 and Figure 3.4, where flow X is interacting directly only with flow A, but

flow A might interact with other flows (B,C,D). We only consider the case in which the

network is stable. We simulated multiple configurations of indirect interference described

in Table 3.2 and varied the arrival rate of flow X (λX), keeping other arrival rates fixed

for simplicity (λA = λB = λC = λD = 0.2). The results (Figure 3.3 and Figure 3.5) show

that regardless of whether flows B,C,D are present, the impact on the end-to-end delay

for flow X packets is only affected by flow A, and the impact of flows B, C and D can be

neglected. This observation holds since the examined system is stable, and hence, indirect

interference does not change the average arrival rate of flow A as it interacts with flow

X. Indirect interference is likely to impact the delay of flow X in unstable systems, but

analysis of such systems is beyond the scope of this work.
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Table 3.2: Different interference combinations

configuration A B C D

I X X X X

II X X X

III X X X

IV X X

V X X

VI X

A B C D

X

Figure 3.2: Configuration 1 showing the isolation method
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Figure 3.3: End-to-end latency for packets from flow X with different interference combi-

nations according to Table 3.2 for configuration 1
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X

Figure 3.4: Configuration 2 showing the isolation method
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Figure 3.5: End-to-end latency for packets from flow X with different interference combi-

nations according to Table 3.2 for configuration 2
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3.2 Sharing a Single Link with a Single Flow

The simplest analyzed test case models a single link shared with a single flow, as shown

in Figure 2.1b. The stationary distribution π of the Markov chain derived in Section 2.1.2

is the solution of the following set of linear equations:

π1λB = π2fB

π1 + π2 = 1

Resulting in:

π1 =
fB

fB + λB

π2 =
λB

fB + λB

Applying Equation 2.1 for the expected throughput provides:

TX = π1ρ1 + π2ρ2 =
fB

fB + λB

+
1
2λB

fB + λB

=

= max

(

φ

MX

− λB
MB

MX

,
φ

2MX

)

TB can be calculated in exactly the same way and following the steps in Section 2.2 LX and

LB can be calculated (not shown). An important observation of this resulting throughput

is that the worst-case throughput observed by flow X is 1
2 of the link capacity, which

corresponds to high contention with the interfering flow B.

Figure 3.6 shows the expected delay of packets in flow X as its throughput requirement,

controlled by the arrival rate (λX) is increased, and where the arrival rate of the interfering

flow B is constant (λB = 0.4). For these parameters, both our model and HDM match

the simulation results well. As explained above, the minimum throughput observed by

flow X is half of the link capacity, and this low throughput is reached when the interfering

flow arrival rate exceeds 0.5. This phenomenon is not accounted for in HDM, because its

heuristics were developed and tuned for low arrival rates. This error in delay estimation

is apparent in Figure 3.7, which shows the case of fixed (λX = 0.4) and variable λB.

The HDM allows the interfering flow B to consume more that half of the link capacity,

resulting in a sharp increase of the estimated delay of flow X, which tends to infinity for

(λX → 0.6). Our model, which inherently accounts for the minimum observed throughput,

on the other hand, matches simulations well.
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Figure 3.6: Flow X sharing a single link with a single flow - variable λX .
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Figure 3.8: Comparison of sharing a single link with three total flows (two interfering

flows with (λA = λB = 0.2) (sim-triple and model-triple) and sharing the link with one

interfering flow of equivalent rate (λA = 0.4) (sim-double and model-double). HDM models

both cases as a single interferer with (λ = 0.4).

In addition, an interesting observation can be made regarding the degree of estimation

error of our model (see Figure 3.7). The end-to-end latency of flow X when (λX =

0.4 < λB) has linear behavior with respect to λB. As can be seen, our presented model

overestimates the end-to-end delay for this case, albeit with bounded error. The reason is

that we assume that flow X is always active and has flits available for transmission. This

assumption, however, partially fails when the interfering flow B has a higher rate than the

investigated flow X. When flow X is not active, flow B observes higher service rate and

is transmitted more quickly. This reduces the probability that it actually interferes with

flow X and leads to the overestimation error.

While leaving more in-depth investigation of this phenomenon to future work, both in

terms of curbing it and with respect to providing a tight bound, we now characterize the

error behavior. First, we notice that because of this error, the end-to-end latency can only
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be over estimated and not under estimated. Second, the error can be roughly bounded

by:

ξ < LB(λX = 0.5) − LB(λX = λB)

3.3 Sharing a Single Link with Multiple Flows

We now analyze the test case of a single link with multiple interfering flows, which corre-

sponds to Section 2.1.3. In this scenario, HDM only considers the sum of the arrival rates

of all the competing flows; hence, it cannot distinguish between a single interfering flow

with (λ = 0.4) and two interfering flows with (λ = 0.2) each, for example.

As shown in Figure 3.8, however, these two distinct cases result in very different through-

put/delay characteristics. Our technique faithfully models the two cases, and closely

follows simulation results.

3.4 Sharing Multiple Links

The last example is of sharing multiple links with different flows as shown in Figure 2.3a

and discussed in Section 2.1.4. In this scenario, there is a finite buffer in an intermediate

node that can back-pressure flow X.

Figure 3.9 demonstrates the impact of varying the buffer capacity for interfering flows of

fixed rate (λA = λB = 0.2) and varying λX . Simulation results for buffer capacities of

5 and 300 flits are shown, along with estimates provided by the proposed model and by

HDM. With lower buffer capacity, the peak throughput drops substantially, which our

model accurately predicts. HDM [18], which is oblivious to the buffer capacity, does not

match the simulation results.

Finally, another aspect of this multiple interferer scenario relates to the order in which the

interfering flows appear along the path of flow X. Following the conclusions of the analysis

described in Section 2.1.4, our proposed model estimates the same network performance

properties (throughput) regardless of the order of the interfering flows. HDM, on the other

hand, is sensitive to the order in which the interfering flows are applied, as is evident in

Figure 3.10, which shows results for two different configurations: Configuration A, where

(λA = 0.3) and (λB = 0.1); and Configuration B where (λA = 0.1) and (λB = 0.3).
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Figure 3.9: Flow X sharing multiple links with multiple flows – variable buffer capacity.
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Chapter 4

Benchmark Delay Model and

Placement Optimization

In this section we demonstrate how our analytical model can be used in the inner-loop of

many optimization algorithms, such as module placement, buffer allocation, link capacity

allocation, and network topology selection. These inner loops cannot solely rely on simu-

lations, as simulations take too long to complete, making analytical models crucial for an

efficient design process. Further, the correctness of the analytical models directly affects

the correctness of the optimization algorithm. Therefore, we show that our analytical

model is both fast and accurate in real-world scenarios.

We first analyze the delay of all flows in a SoC using the audio-video benchmark presented

in [20], with the traffic requirements summarized in Table 4.1. Using detailed simulations,

Section 4.1 compares the accuracy and computation time of our proposed model against

HDM. We then illustrate in Section 4.2 how our analytical model can be used in a module

placement algorithm that attempts to minimize overall flow delay, whereas HDM fails to

make a correct optimization decision.

4.1 Benchmark Delay Model

We evaluate our analytical delay model for the benchmark system and traffic requirements

shown above assuming Poisson arrival times. We use a 4 × 4 mesh topology with the

parameters detailed in Table 3.1, and the module placement shown in Figure 4.1, denoted

placement A, where arrows indicate the different flows. For the simulations, we use the
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Table 4.1: Audio-video benchmark traffic requirements from [20].
flow src dst rate [kB/s] flow src dst rate [kB/s]

F1 MEM1 ASIC4 1168730 F16 ASIC4 DSP1 338480

F2 ASIC2 ASIC1 800 F17 DSP1 DSP2 338480

F3 MEM1 CPU 752050 F18 DSP8 DSP7 282650

F4 MEM3 CPU 755840 F19 DSP6 ASIC2 282480

F5 ASIC4 CPU 1970 F20 DSP1 CPU 203630

F6 DSP3 DSP6 70610 F21 DSP2 DSP1 203630

F7 ASIC1 ASIC2 250 F22 DSP3 DSP5 70610

F8 DSP3 ASIC4 380160 F23 DSP7 MEM2 70650

F9 DSP8 ASIC1 800 F24 MEM2 ASIC3 77050

F10 DSP5 DSP6 269240 F25 ASIC3 DSP8 6410

F11 CPU MEM1 380160 F26 DSP4 DSP1 36720

F12 CPU MEM3 380160 F27 ASIC2 MEM2 6400

F13 CPU ASIC3 380160 F28 ASIC2 ASIC3 7650

F14 DSP2 ASIC2 338480 F29 ASIC3 DSP4 1440

F15 DSP4 CPU 1970 F30 ASIC1 DSP8 250

simulator described in Chapter 3, and run the simulations long enough for all performance

characteristics of the different flows to stabilize.

Figure 4.2 shows the average total queuing delay of each flow due to network contention,

i.e. the average latency beyond the network propagation time. It compares the simulation

results with our proposed analytical model, as well as the analytical model presented

in [18]. Due to space limitations, we only present the eight flows with the greatest relative

slowdown, as ranked by simulation results and presented in Table 4.1 as (F1, . . . , F8).

As shown in Figure 4.2, our model approximates the simulation results significantly more

accurately than HDM. In particular, Figure 4.3 depicts the absolute error of the queuing

delay for each flow for both analytical models. We can see that the error for each flow is

under 15% for our model, while the error of HDM is often above 50% and can be greater

than even a factor of 10 times.

We also note that the time required to compute the results is orders of magnitude faster

using our model than with the detailed simulation, requiring only 33ms as opposed to over

7 hours of simulation time.

4.2 Placement Optimization

A possible use of the analytical delay model is to estimate network and flow properties

within the inner-loop of a module placement optimization algorithm. As shown above, our

model can quickly compute delay with high accuracy and in this subsection we demonstrate

that it also reflects the change in delay as a result of varying the module placement. Hence,

our model can be used to predict, and correctly and efficiently choose between multiple

placement options. Without loss of generality, we assume that there is a need to choose

36



DSP7 DSP2 ASIC1 DSP8

DSP4 DSP1 ASIC4 DSP3

MEM3 CPU MEM1 DSP5
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Figure 4.1: Placement A of the components and flows of the audio-video SoC of [20].

between two placements: placement A, illustrated in Figure 4.1, and placement B, shown

in Figure 4.4, where modules ASIC4 and DSP5 have been swapped.

Figure 4.5 shows the average flow queuing delays for placements A (dark columns) and B

(light gray columns). The simulation columns show that the average flow delay is lower in

placement A. This is accurately reflected in our analytical model, which closely approxi-

mates the simulation delays to within 3%, and would also have pointed to placement A as

having a smaller overall delay. HDM, on the other hand, can be quite inaccurate, and as

a result leads to an incorrect placement decision, predicting that placement B has lower

overall latency than placement A.
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placement depicted in Figure 4.1.
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Figure 4.4: Placement B of the components and flows of the audio-video SoC of [20].
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Chapter 5

Discussion and Future Work

Our model is constructed based on several important assumptions, which impact its ac-

curacy as discussed below. We assume that flow X is always active, and is thus always

competing for link capacity with the interfering flows. We discuss the implications in Sec-

tion 3.2 and show that the resulting error is both bounded and limited to scenarios where

the interfering flows require more throughput than flow X.

In this work we assumed that packets are of constant length and arrive according to a

Poisson process. The arrival process determines the expected delay through Equation 2.3,

however, it is possible to compute the delay using a G/G/1 queuing model instead of the

M/G/1 model we assumed to allow any stochastic arrival process. Finally, we approxi-

mated the end-to-end delay by neglecting the header flit propagation delay (Equation 2.5),

which is only accurate for long packets.

Our final assumption is that virtual channels are always available for any flow. Extending

the model to account for this type of head-of-line blocking is left for future work.

The list below summarizes all the assumptions in this work:

• Wormhole switching

• Number of VCs available always satisfies the demand

• Deterministic routing

• Round-robin arbitration amongst VCs

• Finite intermediate buffers
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• Infinite network entrance queue

• Poisson packet injection process

• Constant packet length

• No backpressure from (final) destination — infinite network exit queue

• Network stability

In this work, an attempt to reduce the amount of MC states was taken using the isola-

tion assumption and by not representing the state of the network entrance queues (Sec-

tion 2.1.1). Trying to represent the occupancy of the infinite network entrance queues

would lead to infinite amount of states. Avoiding the assumtption would require the MC

to represent the states of all the available network flows (F ) along with the occupancy of

all intermediate buffers in all R routers. With total number of F flows, there are exactly

2F−1 possible combinations of interfering flows. Each intermediate buffer occupancy can

be in the [0..∆] range, requiring (∆ + 1) states for representation. Taking into account

that the number of intermediate buffers is O(R) leads to an upper bound of O(2F ∗ ∆R)

states. However, using the assumption, we reduce it to O(2Ψα ∗ ∆Pα) where Ψα is the

number of interfering flows (for a specific flow of interest α) and Pα is the number of

hops between the source and the destination for that flow. In the example discussed in

Chapter 4, F = 30, R = 16, ∆ = 5, max(Ψα) = 2, and max(Pα) = 6.

As part of future work, should be investigated the possibility of significantly simplifying the

Markov chain by relying on MC decomposition methods developed for industrial flowline

analysis [3, 9, 11, 16, 34]. This line of work promises to expedite the solution of complex

NoCs by curbing the exponential growth in the number of states required to model a large

number of interfering flows.

While this work demonstrated our model for estimating throughput and end-to-end delay,

the model inherently captures other network phenomena and parameters. For example,

estimating buffer occupancy levels is a straight-forward extension, that uses the MC rep-

resentation discussed in Section 2.1.4.
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Chapter 6

Conclusions

In this work we introduced a packet-level static timing analysis (STA) for NoCs. We

showed how it allows for a quick and precise evaluation of the performance parameters of

a virtual-channel wormhole NoC without using any simulation techniques. It can handle

any topology, link capacities, and buffer capacities — and unlike existing models, is able

to evaluate the performance of a specific flow in a precise manner.

Our new model allows for a per-flow STA that is orders-of-magnitude faster than sim-

ulation. Ultimately, the objective is for this packet-level STA model to be used in the

inner-loop of NoC optimization tools — and become the packet-level equivalent of gate-

level critical path analysis utilized in CAD tools.
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Appendix A

Simulator

In order to validate the model a cycle-accurate, discrete-event, NoC simulator was built.

The simulator is based on an open source OMNET++ framework [41] widely used for

network research. The simulator is written in C++ (tested both on Win XP and Linux

platforms). Thanks to the OMNET++ infrastructure, it can be easily compiled in 2

configurations :

• interactive - debug oriented version allowing graphical user interface visualizing the

behavior of the network with animation. Allows to click on an entity and to see it

contens in real time (for example to track contents of a buffer) as shown on Figure A.1.

• command line - performance optimized version for long simulations run

Figure A.1: Screenshot of 4x4 NoC simulation
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A.1 Network Topology

Network topology is defined in a special format ned file. Bellow is an example of a 4 × 4

mesh network definition.

Listing A.1: noc4x4.ned

1 // inc lude bas i c modules

2 import

3 ”nocnode . ned ” ;

4 import

5 ” nocrouter . ned ” ;

6

7 // de f i n e the l i n k s

8 // route r to route r

9 channel NoCxChannel

10 datarate 10 // b i t / psec = 1Gbps

11 endchannel

12

13 // module to route r ( and route r to module )

14 channel NoCxLocalChannel

15 datarate 400 // b i t / psec = 400Gbps

16 endchannel

17

18 // de f i n e the network

19 module Noc4x4

20 submodules :

21 node : NocNode [ 1 6 ] ;

22 parameters :

23 d i sp l ay : ”p=50 ,100 , matrix , 4 , 150 , 150 ; i=dev i ce /cpu ” ;

24

25 route r : NocRouter [ 1 6 ]

26 parameters :

27 g a t e s i z e s :

28 in [ 5 ] , out [ 5 ] , c r e d i t r e c v [ 5 ] , c r e d i t s e nd [ 5 ] ;

29 d i sp l ay : ”p=150 ,50 , matrix , 4 , 150 , 150 ; i=block / rout ing ” ;

30

31 connect ions nocheck :

32 // nodes to r ou t e r s

33 f o r i =0. .15 do

34 node [ i ] . out −−> NoCxLocalChannel −−> route r [ i ] . in [ 0 ] ;

35 node [ i ] . c r e d i t s e nd −−> route r [ i ] . c r e d i t r e c v [ 0 ] ;

36 route r [ i ] . out [ 0 ] −−> NoCxLocalChannel −−> node [ i ] . in ;

37 route r [ i ] . c r e d i t s e nd [ 0 ] −−> node [ i ] . c r e d i t r e c v ;

38 endfor ;

39

40 // v e r i t c a l

41 f o r i =0. .11 do

42 route r [ i ] . out [ 4 ] −−> NoCxChannel −−> route r [ i +4] . in [ 2 ] ;

43 route r [ i ] . in [ 4 ] <−− NoCxChannel <−− route r [ i +4] . out [ 2 ] ;

44 route r [ i ] . c r e d i t s e nd [ 4 ] −−> route r [ i +4] . c r e d i t r e c v [ 2 ] ;

45 route r [ i ] . c r e d i t r e c v [ 4 ] <−− route r [ i +4] . c r e d i t s e nd [ 2 ] ;

46 endfor ;

47

48

49 // ho r i z on t a l

50 f o r i =0. .2 , j =0. .3 do

51 route r [ j∗4+ i ] . out [ 3 ] −−> NoCxChannel −−> route r [ j∗4+ i +1] . in [ 1 ] ;

52 route r [ j∗4+ i ] . in [ 3 ] <−− NoCxChannel <−− route r [ j∗4+ i +1] . out [ 1 ] ;

53 route r [ j∗4+ i ] . c r e d i t s e nd [ 3 ] −−> route r [ j∗4+ i +1] . c r e d i t r e c v [ 1 ] ;

54 route r [ j∗4+ i ] . c r e d i t r e c v [ 3 ] <−− route r [ j∗4+ i +1] . c r e d i t s e nd [ 1 ] ;

55 endfor ;

56

57 endmodule

58

59 network noc4x4 : Noc4x4 ;

60 endnetwork
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Here in lines 7 – 16 the properties of the interconnecting link are defined and in lines 40

– 55 the actual topology is defined.

A.2 Experiments

The simulator makes possible to run multiple experiments in batch mode. For that an

experiment file should be defined. Bellow is an example of an expirement file.

Listing A.2: experiment.ini

1 [ General ]

2 preload−ned− f i l e s =∗.ned

3 network=noc7 # network topology to use ( . ned f i l e )

4 sim−time−l im i t = 8 e7s # run time l im i t ( in s imu la t i on time − not wa l l c l o ck time )

5 rng−c l a s s=”cLCG32”

6

7 [ OutVectors ]

8 ∗∗ . enabled = no

9

10 [Cmdenv ]

11 express−mode=yes

12 performance−d i sp l ay=no

13 event−banners=no

14 runs−to−execute = 1−3 # which runs to run

15 status−f requency =100000000

16

17 [ Parameters ]

18 noc7 . node [ 0 ] . nodecpu . ∗ . address = 0

19 noc7 . node [ 1 ] . nodecpu . ∗ . address = 1

20 noc7 . node [ 2 ] . nodecpu . ∗ . address = 2

21 noc7 . node [ 3 ] . nodecpu . ∗ . address = 3

22 noc7 . node [ 4 ] . nodecpu . ∗ . address = 4

23 noc7 . node [ 5 ] . nodecpu . ∗ . address = 5

24 noc7 . node [ 6 ] . nodecpu . ∗ . address = 6

25

26 # l im i t number o f messages f o r each a c t i v e node to send

27 noc7 . node [ ∗ ] . nodecpu . nodecpuout [ ∗ ] . numMessages = 100000000;

28

29 # packet p r op e r t i e s

30 noc7 . node [ ∗ ] . nodecpu . nodecpuout [ ∗ ] . messageLength = 256

31 noc7 . node [ ∗ ] . nodecpu . nodecpuout [ ∗ ] . f l i t B y t e s = 4

32

33 noc7 . node [ ∗ ] . nodecpu . nodecpuout [ ∗ ] . numStations = 7

34

35 # bu f f e r s s i z e s

36 noc7 . node [ ∗ ] . ∗ . bu fS i z e = 5 ;

37 noc7 . node [ ∗ ] . ∗ . ∗ . bu fS i z e = 5 ;

38 noc7 . ∗ . bu fS i z e = 5 ;

39

40 # schedu l ing po l i c y : 1 − round robin , 2 − exhaust ive

41 noc7 . node [ ∗ ] . ∗ . p o l i c y = 1 ;

42 noc7 . node [ ∗ ] . ∗ . ∗ . p o l i c y = 1 ;

43 noc7 . ∗ . p o l i c y = 1 ;

44

45 # de f i n e here d e s t i n a t i on f o r each node ; −1 stands f o r i n a c t i v e

46 # note that each node has an array o f 3 source s ( cpuout 0 : 2 )

47 noc7 . node [ 0 ] . nodecpu . nodecpuout [ 0 ] . dest = 6

48 noc7 . node [ 0 ] . nodecpu . nodecpuout [ 1 ] . dest = −1

49 noc7 . node [ 0 ] . nodecpu . nodecpuout [ 2 ] . dest = −1

50 noc7 . node [ 1 ] . nodecpu . nodecpuout [ ∗ ] . des t = −1

51 noc7 . node [ 2 ] . nodecpu . nodecpuout [ ∗ ] . des t = −1

52 noc7 . node [ 3 ] . nodecpu . nodecpuout [ 0 ] . dest = 4

53 noc7 . node [ 3 ] . nodecpu . nodecpuout [ 1 ] . dest = −1

54 noc7 . node [ 3 ] . nodecpu . nodecpuout [ 2 ] . dest = −1
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55 noc7 . node [ 4 ] . nodecpu . nodecpuout [ ∗ ] . des t = −1

56 noc7 . node [ 5 ] . nodecpu . nodecpuout [ ∗ ] . des t = −1

57 noc7 . node [ 6 ] . nodecpu . nodecpuout [ ∗ ] . des t = −1

58

59 # fo r i n a c t i v e sources , s e t i n t e r a r r i v a l time to 0

60 noc7 . node [ 0 ] . nodecpu . nodecpuout [ 1 ] . in te rArr iva lT ime = 0 ;

61 noc7 . node [ 0 ] . nodecpu . nodecpuout [ 2 ] . in te rArr iva lT ime = 0 ;

62 noc7 . node [ 1 ] . nodecpu . nodecpuout [ ∗ ] . in te rArr iva lT ime = 0 ;

63 noc7 . node [ 2 ] . nodecpu . nodecpuout [ ∗ ] . in te rArr iva lT ime = 0 ;

64 noc7 . node [ 3 ] . nodecpu . nodecpuout [ 1 ] . in te rArr iva lT ime = 0 ;

65 noc7 . node [ 3 ] . nodecpu . nodecpuout [ 2 ] . in te rArr iva lT ime = 0 ;

66 noc7 . node [ 4 ] . nodecpu . nodecpuout [ ∗ ] . in te rArr iva lT ime = 0 ;

67 noc7 . node [ 5 ] . nodecpu . nodecpuout [ ∗ ] . in te rArr iva lT ime = 0 ;

68 noc7 . node [ 6 ] . nodecpu . nodecpuout [ ∗ ] . in te rArr iva lT ime = 0 ;

69 noc7 . node [ 7 ] . nodecpu . nodecpuout [ ∗ ] . in te rArr iva lT ime = 0 ;

70

71 # fo r a c t i v e sources , s e t d i f f e r e n t i n t e r a r r i v a l t imes f o r each run

72 # can use d i f f e r e n t random d i s t r i b u t i o n s as exponent ia l , uniform etc .

73

74 [Run 1 ]

75 noc7 . node [ 0 ] . nodecpu . nodecpuout [ 0 ] . in te rArr iva lT ime = exponent ia l (8192)

76 noc7 . node [ 3 ] . nodecpu . nodecpuout [ 0 ] . in te rArr iva lT ime = exponent ia l ( 4096 ) ;

77

78 [Run 2 ]

79 noc7 . node [ 0 ] . nodecpu . nodecpuout [ 0 ] . in te rArr iva lT ime = exponent ia l (4096)

80 noc7 . node [ 3 ] . nodecpu . nodecpuout [ 0 ] . in te rArr iva lT ime = exponent ia l ( 4096 ) ;

81

82 [Run 3 ]

83 noc7 . node [ 0 ] . nodecpu . nodecpuout [ 0 ] . in te rArr iva lT ime = exponent ia l (2730 .66667)

84 noc7 . node [ 3 ] . nodecpu . nodecpuout [ 0 ] . in te rArr iva lT ime = exponent ia l ( 4096 ) ;

85

86 . . .

Here lines 47 – 57 define the flows (in this case node0.src0 → node6 and node3.src0 →

node4). Different runs are defined starting from line 74 and which out of those to execute

is specified in line 14.

To run the experiment, simply use ’noc cmd -f experiment.ini’.
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